Data Science: Analysis and Presentation Training Course
The Wolfram System's integrated environment makes it an efficient tool for both analyzing and presenting data. This course covers aspects of the Wolfram Language relevant to analytics, including statistical computation, visualization, data import and export and automatic generation of reports.
Course Outline
- Using associations
- Querying with datasets
- Machine learning for classification and prediction
- Working with semantically imported data
- Authoring customizable documents from templates
- Deploying results to the cloud
Requirements
A basic familiarity with Mathematica and the Wolfram Language.
Need help picking the right course?
Data Science: Analysis and Presentation Training Course - Enquiry
Testimonials (2)
The theoretical explanations
Molatelo Tloubatla - University Of South Africa
Course - Data Science: Analysis and Presentation
Machine learning, python, data manipulation
Siphelo Mapolisa - University Of South Africa
Course - Data Science: Analysis and Presentation
Related Courses
Algorithmic Trading with Python and R
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at business analysts who wish to automate trade with algorithmic trading, Python, and R.
By the end of this training, participants will be able to:
- Employ algorithms to buy and sell securities at specialized increments rapidly.
- Reduce costs associated with trade using algorithmic trading.
- Automatically monitor stock prices and place trades.
Anaconda Ecosystem for Data Scientists
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data scientists who wish to use the Anaconda ecosystem to capture, manage, and deploy packages and data analysis workflows in a single platform.
By the end of this training, participants will be able to:
- Install and configure Anaconda components and libraries.
- Understand the core concepts, features, and benefits of Anaconda.
- Manage packages, environments, and channels using Anaconda Navigator.
- Use Conda, R, and Python packages for data science and machine learning.
- Get to know some practical use cases and techniques for managing multiple data environments.
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
Introductory R (Basic to Intermediate)
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at beginner-level data analysts who wish to use R programming to manipulate data, perform basic data analysis, and create compelling visualizations for insights.
By the end of this training, participants will be able to:
- Understand the basics of R Programming.
- Apply fundamental data science processes.
- Create visual representations of data.
Econometrics: Eviews and Risk Simulator
21 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at anyone who wishes to learn and master the fundamentals of econometric analysis and modeling.
By the end of this training, participants will be able to:
- Learn and understand the fundamentals of econometrics.
- Utilize Eviews and risk simulators.
HR Analytics for Public Organisations
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Kaggle
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data scientists and developers who wish to learn and build their careers in Data Science using Kaggle.
By the end of this training, participants will be able to:
- Learn about data science and machine learning.
- Explore data analytics.
- Learn about Kaggle and how it works.
Mathematica - Introduction, Visualization, and Data Presentation
14 HoursThe "Mathematica - introduction, visualization and presentation of data" training is aimed at participants with basic mathematical knowledge. Mathematica, as a powerful mathematical engine, enables effective calculations, creating text documents, building charts and presenting data. Participants will gain practical skills in working with Mathematica, used, among others, in mathematics, physics, biology, financial analysis and other fields.
Mathematica for Machine Learning
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data scientists who wish to use machine learning in Mathematica for data analysis.
By the end of this training, participants will be able to:
- Build and train machine learning models.
- Import and prepare data for machine learning.
- Separate training data from test data.
- Explore deep learning and neural network applications in data analysis.
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
GPU Data Science with NVIDIA RAPIDS
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data scientists and developers who wish to use RAPIDS to build GPU-accelerated data pipelines, workflows, and visualizations, applying machine learning algorithms, such as XGBoost, cuML, etc.
By the end of this training, participants will be able to:
- Set up the necessary development environment to build data models with NVIDIA RAPIDS.
- Understand the features, components, and advantages of RAPIDS.
- Leverage GPUs to accelerate end-to-end data and analytics pipelines.
- Implement GPU-accelerated data preparation and ETL with cuDF and Apache Arrow.
- Learn how to perform machine learning tasks with XGBoost and cuML algorithms.
- Build data visualizations and execute graph analysis with cuXfilter and cuGraph.
Statistical Analysis using SPSS
21 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at beginner-level to intermediate-level professionals who wish to perform statistical analysis using SPSS to interpret data accurately, run complex statistical tests, and generate meaningful insights.
By the end of this training, participants will be able to:
- Navigate the SPSS interface and manage datasets efficiently.
- Perform descriptive and inferential statistical analyses.
- Conduct t-tests, ANOVA, MANOVA, regression, and correlation analyses.
- Apply non-parametric tests, principal component analysis, and factor analysis for advanced data interpretation.
Talent Acquisition Analytics
14 HoursThis instructor-led, live training (online or onsite) is aimed at HR professionals and recruitment specialists who wish to use analytical methods improve organisational performance. This course covers qualitative as well as quantitative, empirical and statistical approaches.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice