Building Web Applications in R with Shiny Training Course
Description:
This is a course designed to teach R users how to create web apps without needing to learn cross-browser HTML, Javascript, and CSS.
Objective:
Covers the basics of how Shiny apps work.
Covers all commonly used input/output/rendering/paneling functions from the Shiny library.
Course Outline
-
An overview of Shiny
-
Installation of Shiny for a local use
-
Basic Shiny concepts
- Basic control accessories - Buttons, sliders, drop down menus
- Program structure ui.r, server.r
- Building first application
- Running your application
-
Customizing interface
- Html links in Shiny
- JavaScript and Shiny
-
Advanced control accessories
- Showing and Hiding elements of UI
- Dynamic user interfaces
- Advanced reactivity
- Animation
- Downloading uploading data
-
Sharing Shiny web applications
-
An overview of Shiny extensions
Need help picking the right course?
Building Web Applications in R with Shiny Training Course - Enquiry
Testimonials (2)
Trainer was good. Had a good rapport with him. Was able to ask him anything and was knowledgeable.
Pranay - Lotterywest
Course - Building Web Applications in R with Shiny
it was informative and useful
Brenton - Lotterywest
Course - Building Web Applications in R with Shiny
Related Courses
Algorithmic Trading with Python and R
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at business analysts who wish to automate trade with algorithmic trading, Python, and R.
By the end of this training, participants will be able to:
- Employ algorithms to buy and sell securities at specialized increments rapidly.
- Reduce costs associated with trade using algorithmic trading.
- Automatically monitor stock prices and place trades.
Programming with Big Data in R
21 HoursBig Data is a term that refers to solutions destined for storing and processing large data sets. Developed by Google initially, these Big Data solutions have evolved and inspired other similar projects, many of which are available as open-source. R is a popular programming language in the financial industry.
Introductory R (Basic to Intermediate)
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at beginner-level data analysts who wish to use R programming to manipulate data, perform basic data analysis, and create compelling visualizations for insights.
By the end of this training, participants will be able to:
- Understand the basics of R Programming.
- Apply fundamental data science processes.
- Create visual representations of data.
R Fundamentals
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has also found followers among statisticians, engineers and scientists without computer programming skills who find it easy to use. Its popularity is due to the increasing use of data mining for various goals such as set ad prices, find new drugs more quickly or fine-tune financial models. R has a wide variety of packages for data mining.
Cluster Analysis with R and SAS
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at data analysts who wish to program with R in SAS for cluster analysis.
By the end of this training, participants will be able to:
- Use cluster analysis for data mining
- Master R syntax for clustering solutions.
- Implement hierarchical and non-hierarchical clustering.
- Make data-driven decisions to help to improve business operations.
Data and Analytics - from the ground up
42 HoursData analytics is a crucial tool in business today. We will focus throughout on developing skills for practical hands on data analysis. The aim is to help delegates to give evidence-based answers to questions:
What has happened?
- processing and analyzing data
- producing informative data visualizations
What will happen?
- forecasting future performance
- evaluating forecasts
What should happen?
- turning data into evidence-based business decisions
- optimizing processes
The course itself can be delivered either as a 6 day classroom course or remotely over a period of weeks if preferred. We can work with you to deliver the course to best suit your needs.
Data Analysis with Python, R, Power Query, and Power BI
21 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at beginner-level professionals who wish to clean and analyze data, make statistical projections, and create insightful visualizations using these tools.
By the end of this training, participants will be able to:
- Understand the basics of Python, R, Power Query, and Power BI for data analysis.
- Clean and organize datasets using Python and Power Query.
- Perform statistical analysis and projections with R.
- Create professional dashboards and reports with Power BI.
- Integrate and analyze data from multiple sources effectively.
Data Analytics With R
21 HoursR is a very popular, open source environment for statistical computing, data analytics and graphics. This course introduces R programming language to students. It covers language fundamentals, libraries and advanced concepts. Advanced data analytics and graphing with real world data.
Audience
Developers / data analytics
Duration
3 days
Format
Lectures and Hands-on
Data Mining with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Data Mining & Machine Learning with R
14 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Foundation R
7 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at beginner-level professionals who wish to gain a mastery of the fundamentals of R and how to work with data.
By the end of this training, participants will be able to:
- Understand the R programming environment and RStudio interface.
- Import, manipulate, and explore datasets using R commands and packages.
- Perform basic statistical analysis and data summarization.
- Generate visualizations using both base R and ggplot2.
- Manage workspaces, scripts, and packages effectively.
Forecasting with R
14 HoursThis instructor-led, live training in Kenya (online or onsite) is aimed at intermediate-level data analysts and business professionals who wish to perform time series forecasting and automate data analysis workflows using R.
By the end of this training, participants will be able to:
- Understand the fundamentals of forecasting techniques in R.
- Apply exponential smoothing and ARIMA models for time series analysis.
- Utilize the ‘forecast’ package to generate accurate forecasting models.
- Automate forecasting workflows for business and research applications.
Introduction to R with Time Series Analysis
21 HoursR is an open-source free programming language for statistical computing, data analysis, and graphics. R is used by a growing number of managers and data analysts inside corporations and academia. R has a wide variety of packages for data mining.
Introduction to Data Visualization with Tidyverse and R
7 HoursThe Tidyverse is a collection of versatile R packages for cleaning, processing, modeling, and visualizing data. Some of the packages included are: ggplot2, dplyr, tidyr, readr, purrr, and tibble.
In this instructor-led, live training, participants will learn how to manipulate and visualize data using the tools included in the Tidyverse.
By the end of this training, participants will be able to:
- Perform data analysis and create appealing visualizations
- Draw useful conclusions from various datasets of sample data
- Filter, sort and summarize data to answer exploratory questions
- Turn processed data into informative line plots, bar plots, histograms
- Import and filter data from diverse data sources, including Excel, CSV, and SPSS files
Audience
- Beginners to the R language
- Beginners to data analysis and data visualization
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice